skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bralower, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Cretaceous/Paleogene (K/Pg) boundary is marked by one of the largest mass extinctions in Earth’s history, with geological evidence for this event being expressed in hundreds of locations worldwide. An extensively studied section located near El Kef, northwestern Tunisia, is characterized by the classic iridium-rich K/Pg boundary layer, abundant and well-preserved microfossils, and apparently continuous sedimentation throughout the early Danian with no previously described structural complication. These features led to its designation in 1991 as the Global Stratigraphic Section and Point (GSSP) for the base of the Danian (i.e., the K/Pg boundary). However, the outcrop section has become weathered, and the “golden spike” marking the GSSP is difficult to locate. Therefore, the El Kef Coring Project aimed to provide a continuous record of unweathered sediments across the K/Pg transition in cores recovered from five rotary-drilled holes located close to the El Kef GSSP. Here, we present new, high-resolution lithologic, biostratigraphic, and geochemical data from these cores. The recovered stratigraphic successions of each hole (all drilled within ∼75 m of one another) are unexpectedly different, and we identified a formerly unknown unconformity within planktic foraminiferal biozone P1b. Our results provide evidence that sedimentation at El Kef was not as continuous or free from structural complication as previously thought. Despite these challenges, we present a new composite section from the five El Kef holes and an age model correlated to the orbitally tuned record at Walvis Ridge, South Atlantic Ocean, which is critical in placing the paleoenvironmental and paleoecological records from El Kef in a global context. 
    more » « less
  2. Previous ichnological analysis at the Chicxulub impact crater, Yucatán Peninsula, México (International Ocean Discovery Program [IODP]/International Continental Scientific Drilling Program [ICDP] Site M0077), showed a surprisingly rapid initial tracemaker community recovery after the end-Cretaceous (Cretaceous-Paleogene [K-Pg]) mass extinction event. Here, we found that full recovery was also rapid, with the establishment of a well-developed tiered community within ~700 k.y. Several stages of recovery were observed, with distinct phases of stabilization and diversification, ending in the development of a trace fossil assemblage mainly consisting of abundant Zoophycos, Chondrites, and Planolites, assigned to the Zoophycos ichnofacies. The increase in diversity is associated with higher abundance, larger forms, and a deeper and more complex tiering structure. Such rapid recovery suggests that favorable paleoenvironmental conditions were quickly reestablished within the impact basin, enabling colonization of the substrate. Comparison with the end-Permian extinction reveals similarities during recovery, yet postextinction recovery was significantly faster after the K-Pg event. The rapid recovery has significant implications for the evolution of macrobenthic biota after the K-Pg event. Our results have relevance in understanding how communities recovered after the K-Pg impact and how this event differed from other mass extinction events. 
    more » « less
  3. Abstract The Cretaceous-Paleogene (K-Pg; 66 Ma) mass extinction was caused by a bolide impact on the Yucatán platform near modern Chicxulub, Mexico. Calcareous nannoplankton, a dominant group of primary producers, were almost eradicated at this time. Post-impact nannoplankton assemblages from Northern Hemisphere sites were characterized by a short-lived series of high-dominance, low-diversity acmes (“boom-bust” successions), which likely represent an unstable post-impact environment. Although these boom-bust successions are a global signal, the mechanisms that controlled the taxonomic switchovers between acmes are currently unknown. Here, we present detailed analyses of calcareous nannoplankton and planktic foraminiferal assemblages in a new K-Pg section from the peak ring of the Chicxulub crater. We show that although nannoplankton assemblages resemble the typical series of acmes at Tethyan sites, the termination of the “disaster” acme in the crater is delayed by at least 500 k.y. The coincidence between shifts in the dominant planktic foraminiferal trophic group and switchovers in nannoplankton boom-bust taxa suggests that this series of acmes may represent a gradual trend toward oligotrophy driven by the global restoration of biological pump efficiency. Thus, the global diachroneity of boom-bust successions likely reflects the differential pacing of biological pump restoration between oceanic basins and settings. 
    more » « less
  4. null (Ed.)
  5. Migration is an integral feature of modern mysticete whale ecology, and the demands of migration may have played a key role in shaping mysticete evolutionary history. Constraining when migration became established and assessing how it has changed through time may yield valuable insight into the evolution of mysticete whales and the oceans in which they lived. However, there are currently few data which directly assess prehistoric mysticete migrations. Here we show that calcite δ18O profiles of two species of modern whale barnacles (coronulids) accurately reflect the known migration routes of their host whales. We then analyze well-preserved fossil coronulids from three different locations along the eastern Pacific coast, finding that δ18O profiles from these fossils exhibit trends and ranges similar to modern specimens. Our results demonstrate that migration is an ancient behavior within the humpback and gray whale lineages and that multiple Pleistocene populations were undertaking migrations of an extent similar to those of the present day. 
    more » « less
  6. null (Ed.)
    We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day. 
    more » « less
  7. Abstract The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world’s oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater. 
    more » « less